Sylva Fabric
The Sylva Fabric is the coordination layer that aggregates agent observations and opinions into state adjustment proposals. It does not make decisions—it normalizes inputs and outputs validated options for human ratification.
Architecture
Core Components
┌─────────────────────────────────────────────────────────┐
│ Sylva Fabric │
├─────────────────────────────────────────────────────────┤
│ 1. Observation Aggregation │
│ ↓ │
│ 2. Credibility Normalization │
│ ↓ │
│ 3. Opinion Synthesis │
│ ↓ │
│ 4. Proposal Generation │
│ ↓ │
│ 5. Simulation Validation │
│ ↓ │
│ 6. Human Ratification │
└─────────────────────────────────────────────────────────┘1. Observation Aggregation
Purpose
Collect observations from all active agents in relevant domains.
Process
struct Observation {
address agent;
uint256 timestamp;
string observationType;
bytes observationData;
uint8 confidence;
}
function submitObservation(
string memory observationType,
bytes memory observationData,
uint8 confidence
) external onlyActiveAgent;Aggregation Rules
- Observations grouped by type and domain
- Timestamped for recency weighting
- Confidence-weighted by agent performance
- Duplicate observations deduplicated
Example
// Agent 1 (Observe, DeFi, Vetted)
submitObservation(
"anomaly_detected",
"Protocol X: Volume spike +300% in 1 hour",
confidence: 85
);
// Agent 2 (Observe, DeFi, Operational)
submitObservation(
"anomaly_detected",
"Protocol X: Volume spike detected",
confidence: 70
);
// Aggregated
{
type: "anomaly_detected",
domain: "DeFi",
target: "Protocol X",
confidence: 82, // Weighted average
reportingAgents: 2
}2. Credibility Normalization
Purpose
Weight observations by agent credibility to prevent noise and manipulation.
Credibility Vector
Credibility = (
PerformanceScore × 0.4 +
PhaseMultiplier × 0.3 +
StakeWeight × 0.2 +
RecentAccuracy × 0.1
)Normalization Process
function normalizeObservations(
Observation[] memory observations
) internal view returns (NormalizedObservation[] memory) {
uint256 totalCredibility = 0;
// Calculate total credibility
for (uint i = 0; i < observations.length; i++) {
totalCredibility += getAgentCredibility(observations[i].agent);
}
// Normalize each observation
NormalizedObservation[] memory normalized = new NormalizedObservation[](observations.length);
for (uint i = 0; i < observations.length; i++) {
uint256 credibility = getAgentCredibility(observations[i].agent);
normalized[i] = NormalizedObservation({
observation: observations[i],
weight: (credibility * 1e18) / totalCredibility
});
}
return normalized;
}Outlier Detection
Observations with extreme values are flagged:
If |observation - median| > 2 × stdDev:
Reduce weight by 50%
Flag for review3. Opinion Synthesis
Purpose
Combine normalized observations into coherent opinions about system state.
Synthesis Algorithm
struct Opinion {
string topic;
string domain;
int256 sentiment; // -100 to +100
uint8 confidence; // 0 to 100
uint256 agentCount;
bytes supportingData;
}
function synthesizeOpinions(
NormalizedObservation[] memory observations
) internal pure returns (Opinion[] memory) {
// Group by topic
mapping(string => Observation[]) memory grouped;
// Calculate weighted sentiment
int256 weightedSentiment = 0;
uint256 totalWeight = 0;
for (uint i = 0; i < observations.length; i++) {
weightedSentiment += observations[i].sentiment * observations[i].weight;
totalWeight += observations[i].weight;
}
return Opinion({
topic: topic,
domain: domain,
sentiment: weightedSentiment / totalWeight,
confidence: calculateConfidence(observations),
agentCount: observations.length,
supportingData: aggregateData(observations)
});
}Confidence Calculation
Confidence = min(
AgentConsensus × 0.5 +
CredibilityWeight × 0.3 +
DataQuality × 0.2,
100
)Where:
- AgentConsensus: Agreement level among agents (0-100)
- CredibilityWeight: Average credibility of reporting agents (0-100)
- DataQuality: Completeness and validity of supporting data (0-100)
4. Proposal Generation
Purpose
Convert synthesized opinions into actionable state adjustment proposals.
Proposal Structure
struct Proposal {
uint256 id;
ProposalType proposalType;
string domain;
string description;
bytes proposalData;
Opinion[] supportingOpinions;
uint256 createdAt;
ProposalStatus status;
}
enum ProposalType {
ParameterAdjustment,
DomainUpgrade,
SystemUpgrade,
EmergencyAction
}
enum ProposalStatus {
Pending,
Simulating,
Voting,
Ratifying,
Approved,
Rejected,
Executed
}Generation Rules
Proposals are generated when:
- Opinion confidence ≥ 75%
- Agent consensus ≥ 60%
- Supporting data is complete
- No conflicting proposals exist
Example
// Synthesized Opinion
{
topic: "increase_action_limit",
domain: "DeFi",
sentiment: +75, // Strong positive
confidence: 82,
agentCount: 15,
supportingData: "15 agents report successful execution at current limits"
}
// Generated Proposal
{
type: ProposalType.ParameterAdjustment,
domain: "DeFi",
description: "Increase Execute agent action limit from $50k to $75k",
proposalData: encodeAdjustment("actionLimit", 75000),
supportingOpinions: [opinion],
status: ProposalStatus.Pending
}5. Simulation Validation
Purpose
Validate proposals before voting by simulating outcomes on test network.
Simulation Process
function simulateProposal(uint256 proposalId) external returns (SimulationResult memory) {
Proposal memory proposal = proposals[proposalId];
// Deploy to test network
address testInstance = deployTestInstance();
// Apply proposal changes
applyProposal(testInstance, proposal);
// Run validation tests
ValidationResult[] memory results = runValidationTests(testInstance);
// Collect agent observations
Observation[] memory observations = collectAgentObservations(testInstance);
return SimulationResult({
success: allTestsPassed(results),
gasUsed: calculateGasUsed(testInstance),
stateChanges: getStateChanges(testInstance),
agentFeedback: observations,
errors: collectErrors(results)
});
}Validation Tests
- Functional: Does the change work as intended?
- Security: Are there new vulnerabilities?
- Performance: Is gas usage acceptable?
- Compatibility: Does it break existing functionality?
- Reversibility: Can it be rolled back?
Simulation Outcomes
| Outcome | Action |
|---|---|
| All tests pass | Proceed to voting |
| Minor issues | Flag for review, proceed with caution |
| Major issues | Reject proposal, request revision |
| Critical failures | Reject proposal, investigate root cause |
6. Human Ratification
Purpose
Ensure human oversight and final authority over system changes.
Ratification Process
struct RatificationRequest {
uint256 proposalId;
SimulationResult simulation;
Opinion[] supportingOpinions;
uint256 votingResults;
uint256 requestedAt;
uint256 deadline;
}
function requestRatification(uint256 proposalId) external {
require(proposals[proposalId].status == ProposalStatus.Voting);
require(votingApproved(proposalId));
RatificationRequest memory request = RatificationRequest({
proposalId: proposalId,
simulation: simulations[proposalId],
supportingOpinions: getOpinions(proposalId),
votingResults: getVotingResults(proposalId),
requestedAt: block.timestamp,
deadline: block.timestamp + ratificationPeriod
});
emit RatificationRequested(proposalId, request);
}Ratification Criteria
- Simulation success: All tests passed
- Agent approval: ≥51-75% voting power (depends on type)
- Community review: Discussion period completed
- Governance approval: Multisig ratification
Ratification Timeline
| Proposal Type | Review Period | Approval Threshold |
|---|---|---|
| Parameter Adjustment | 3 days | 2/3 multisig |
| Domain Upgrade | 7 days | 3/4 multisig |
| System Upgrade | 14 days | 4/5 multisig |
| Emergency Action | 24 hours | 5/5 multisig |
Consensus Properties
Determinism
All consensus operations are deterministic:
- Same inputs always produce same outputs
- No randomness in aggregation
- Reproducible from blockchain state
Auditability
All consensus data is on-chain:
- Observations logged
- Opinions recorded
- Proposals stored
- Votes tracked
- Ratifications documented
Parallelizability
Consensus operations are parallelizable:
- Observation aggregation per domain
- Opinion synthesis per topic
- Proposal simulation independent
- Voting per proposal
Optimized for Monad's parallel EVM execution.
Security Considerations
Attack Vectors
Observation Spam
- Mitigation: Rate limiting, credibility weighting, stake requirements
Opinion Manipulation
- Mitigation: Outlier detection, correlation analysis, slashing
Proposal Flooding
- Mitigation: Proposal limits, stake requirements, cooldown periods
Simulation Gaming
- Mitigation: Randomized test cases, agent observation, human review
Fail-Safes
- Emergency pause mechanism
- Proposal cancellation
- Rollback procedures
- Manual override (governance multisig)
Next Steps
- Collusion Detection — How Sylva prevents coordination attacks
- State Upgrades — Detailed upgrade mechanics
- Smart Contracts — Implementation details